| Please print or type in (fill-in areas are space | | | racters | /inch). | | | For Approved. OMB N | o. 20 | 40-0086. Aj | oprova | l expir | res 5-31-92 | |--|---|---|--------------------|-----------------------------|---|----------------|---|-------------------------------|---|--|---------------------------------------|---| | FORM | | - 1 | U.S | S. ENVII | RONMENTAL | | TECTION AGENCY | l. E | EPA I.D. NI | JMBE | R | | | 1 | % [| | C | onsc | lidated P | erm | ORMATION nits Program | F | VAD1218 | 32402 | | T/A C
D | | GENERAL
LABEL ITEMS | | | | | neral Instru | ictio | ons" before starting.) | 1 | 2 | o= | 13 | | | | | VAD12182 | 402 | 3 | | | | lf s | GENERA
preprinted I | ahel h | oe hee | an provided | | I. EPA I.D. NUME | 3ER | | | | | | | affi: | x it in the desi | gnated
efully; | space
if an | Review the | | III. FACILITY NA | ME | Ronile, Inc | , | | | | | con | x it in the desi
ormation care
orrect cross
rect data in to
ow. Also, if an
eent (the area | through
ne app
y of the | it an
opriate
prepr | d enter the
e fill-in area
inted data is | | V. FACILITY
MAILING LIST | Γ | P.O. Box 1 | 059, | , Ro | cky Mo | un | t, VA 24151 | spa | ce lists the pear), please parea(s) below correct, you l, V, and VI(e. | inform
rovide | <i>ation</i>
it in th | that should | | VI. FACILITY
LOCATION | | 701 Orcha
24151 | rd A | ven | ue, Roc | ky | Mount, VA | if no
inst | o label has be
ructions for c
for the legal | een pro
letailed
authoriz | omple
ved. I
item | ete all items
Refer to the
descriptions | | II. POLLUTANT | CHAR | ACTERISTICS | | | | | | tnis | data is collec | tea. | | | | INSTRUCTIONS: Col
questions, you must s
the supplemental form | mplete /
ubmit th | A through J to deter
is form and the sup
thed. If you answer | plemen
"no" to | ital fror
each
instru | ท listed in the
question, you
ctions. See a | e par
i nec | mit any permit application f
enthesis following the ques
ed not submit any of these f
Section D of the instructions | tion. N
orms. | ark "X" in the | box in | the thi
o" if yo
ed terr | ird column if
ur activity is
ms . | | SPECIFIC | QUEST | TIONS | YES | MAR | K "X" FORM ATTACHED | | SPECIFIC QUEST | TIONS | | | MARI | FORM | | A. Is this facility a publi
which results in a c
U.S.? (FORM 2A) | cly owned | ed treatment works
e to waters of the | | \boxtimes | | B. | proposed) include a cor
feeding operation or
production facility which res | ncentra
aqua
sults in | ated animal
itic animal | | \boxtimes | ATTACHED | | C. Is this facility w | hich cu | irrently results in | 16 | 17 | 18 | n | to waters of the U.S.? (FORM
Is this proposal facility (other t | Company of the Control | nee described | 19 | 20 | 21 | | discharges to wate
those described in A | ore of the | ne IIS other than | 22 | 23 | 24 | | in A or B above) which will re
to waters of the U.S.? (FORM | esult in | a discharge | 25 | 26 | 27 | | E. Does or will this facil hazardous wastes? | lity treat, | store, or dispose of | | × | | F. | | s facilit
lower
er mile | of the well | | Z0
 | | | O D | | | 28 | 29 | 30 | | (FORM 4) | | | 31 | 32 | 33 | | G. Do you or will you produced water othe the surface in connernatural gas product enhanced recovery offluids for storage | r fluids w
ction with
tion, inje
of oil or n | which are brought to
a conventional oil or
ect fluids used for
atural gas, or inject | | \boxtimes | | Н. | Do you or will you inject at this special processes such as mir Frasch process, solution minir situ combustion of fossil fuel, geothermal energy? (FORM 4 | ning of
ng of m
or reco | sulfer by the inerals, in | | \boxtimes | | | (FORM 4) | | | 34 | 35 | 36 | | 1 01 1 01 | | | 37 | 38 | 39 | | which is one of the 2
in the instructions an
100 tons per year of | 28 industr
nd which
f any air | rial categories listed
will potentially emit
pollutant regulated | | \boxtimes | | J. | Is this facility a proposed which is NOT one of the 28 i listed in the instructions and vemit 250 tons per year of | industri
vhich v
any | ial categories
vill potentially
air pollutant | | \boxtimes | | | under the Clean Air
located in an attainm | | | 40 | 41 | 42 | | regulated under the Clean Air
or be located in an attainment | | | 43 | 44 | 45 | | III. NAME OF FAC | | | | | | | | | | | | | | SKIP Ronil | e, Inc. | | | | | | | | | | | | | 15 16-29 30 | | | | | | | | 7850 Sp. 23 | | THE RESERVE OF THE PARTY | 9 # | | | IV. FACILITY CON | | | | | | VI 100 | | 1000000 | | | | | | C R Lane Leo | | NAME & TITLE <i>(last</i>
General Mana g | | s title) | | | 2,00,000 | IE (are
484 | ea code & no., | | 4 | 1 2 2 2 | | 2 7. Lane Leon
15 16 | ııaıu, ' | Gerierai wanay | iei | an de deservir | | 10 C 10 S | | | 46 | | 1 | | | and water production of the production of the control contr | 化三甲烷二 医阿拉拉氏 | amanga partas da Partas pilitor Del Rolagi (1995) | enneget på 6,745 f | | eran beringer (1966) | 36707.46 | 45 46 48 | 49 | 51 52 | 55 | | STANDARD STANDARD | | 701 Orchard Avenue | | | | |--------------------|----------|-------------
--| | 3
15 16 | 45 | | | | B. COUNTY NAME | | | | | Franklin | | | | | 46 | 70 | | | | C. CITY OR TOWN | D. STATE | E. ZIP CODE | F. COUNTY CODE | | | Se-200 | 01151 | TOTAL STATE OF THE | | C Rocky Mount | VA | 24151 | | | CONTINUED FRO | OM THE FRONT
S (4-digit, in order of priority) | | | 90 | | | | | | | |--|---|------------------------------------|---|---|---|--|---|---|---|--| | | A. FIRST | | 7 | | | | B. SECC | DNO | | | | C 2269
7 15 16 17 | (specify) Textile Mills Products | | 7 | 16 19 | (spe | сіту) | | | | | | | C. THIRD | | 7 | 10 19 | 1 / | - (C.) | D. FOUF | RTH. | | | | 7
15 16 17 | (specify) | | 7 | 16 19 | (spe | city) | | | | | | | OR INFORMATION | | 10 | 19 | | | | D. PHONE (area of 40 483 18 19 AN LAND ty located on Indian ES No S) (Specify) 30 (Specify) 30 (Specify) 30 (Specify) 30 (Specify) 40 483 The property boundaries of the control | | | | Ronile, II | | IAME | | | | | | | VIII-A a | name listed in Iten
also the owner?
:S | | 18 19
C. STATUS OF O | PERATOR (Enter the appropriate letter in | to the ar | nswer bo | ox; if "Other," spe | ecify.) | | D. PH | | | | | F = FEDERAL
S = STATE
P = PRIVATE | M = PUBLIC (other than federal or state) O = OTHER (specify) | P 56 | (spec | ify) | | C
A
15 | 540
16 18 | | 483 | 22 25 | | B.O. Boy 4050 | E. STREET OR PO BOX | | | | | | | | | | | P.O. Box 1059 | | т 5 | OT 4 TE | 55 | | | | | | | | C Rocky Mo | F. CITY OR TOWN | | STATE
/A | H. ZIP CO
24151 | DDE | | | | | nds? | | B 15 16 | 40 | 42 | | 47 | 51 | |] YES | | | | | X. EXISTING E | NVIRONMENTAL PERMITS | | | | | 10 | | ı | | | | CTIIV | S (Discharges to Surface Water) A0076015 | С | T 8 | ir Emissions fron | n Prop | osea Sol | irces) | 1 | | | | 9 N 15 16 17 18 | 30 | | P 17 | 18 . | | | 30 | | | | | B. UIC (0 | Underground Injection of Fluids | c | т 8 | E. OTHER (s | pecify) | 1 | | (Sp | ecify) | | | 9 U 15 16 17 18 | 30 | 9 15 1 | 16 17 | 18 | | | 30 | | | | | | CRA (Hazardous Wastes) | | т 8 | E. OTHER (s | pecify) | | | (Sp | ecify) | | | 9 R | 30 | 9 | 16 17 | 18 | | | 20 | | | | | 15 16 17 18 XI. MAP | 30 | 10 | | 10 | | | SU | | | | | hazardous wa rivers and othe XII. NATURE C | ine of the facility, the location of easte treatment, storage, or disposal fact surface water bodies in the map and DF BUSINESS (provide a brief de uring facility is a dyer and finish | acilities
ea. Se
scription | , and e
e instru
on) | ach well where
ctions for prec | e it inj
ise red | ects flui
quiremen | ds under
nts.
The yar | grou
n is | nd. Includ | de all springs, and run | | setting chemic
treatment facilithrough Pad R
Excess water
chemicals are | t setter for bulking. Then the yeal are added. Excess water, clity. The yarn is steamed to set Rollers and a dryer to remove exor condensate is collected and mixed with water and pumped piped to a lint removal system, | the di
ccess
piped
into R | als, and
ye and
water
to the
lug Dy | d dye are co
l is then was
prior to pacl
treatment fo
e Machines. | ollecto
shed t
kagin
acility
Afte | ed and
to remo
g for s
/. In th
r rinsin | piped of
ove excentioned
hipmen
ne Rug L
ng and o | out to
ess
t to
Oye | o the wa
dye. The
the cust
area, dye | stewater
e yarn is run
omer.
es and | | I certify under all attachments the application | ATION (see instructions) penalty of law that I have personally s and that, based on my inquiry of th n, I believe that the information is tru | ose pei
e, accu | rsons ii
urate ai | nmediately res
nd complete. | sponsi | ble for c | btaining | the i | nformatioi | n contained in | | | e information, including the possibility
IAL TITLE (type or print) | | and in
NATUR | | | | | | C. DATE S | SIGNED | | | ard, General Manager | K | | and C | | Q | | | 3/2 | 1/2013 | | | OR OFFICIAL USE ONLY | 1 | | TO KO | verre | | 12 | | -14 | , 1 1 - 1 | | C C 15 16 | | (i) | | | | | | 55 | | | Please type or print in the unshaded areas only # EPA ID Number (Copy from Item 1 of Form 1) VAD121824023 Form Approved OMB No. 2040-0086 Approval expires 8-31-98 Form 2C **NPDES** \$EP U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR DEPART TO DESCRIPTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program #### I. Outfall Location For this outfall, list the latitude and longitude, (degrees, min.xxxx) and name of the receiving water(s) | | Receiving Water (name) | Longitude | | Latitude | | Outfall | |-----------|------------------------|-----------------|-----|----------|-----|---------------| | | | Min | Deg | Min | Deg | Number (list) | | | Pigg River | <i>52.</i> 9333 | 79 | 59.0833 | 36 | 001 | | 4,100,000 | | | | | | | | | | | | | | | | - | | | | | | | | | · | | | | | | II. Flows, Sources of Pollution, and Treatment Technologies - A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed description in Item B.
Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictoral description of the nature and amount of any sources of water and any collection or treatment measures. - B. For each outfall, provide a description of (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary. | 1. Outfall No. | Operations Contr | ibuting Flow | | 3. Treatment | |----------------|--|---------------------------------|---|-------------------------------| | (list) | a. OPERATION (list) | b. AVERAGE FLOW (include units) | a. DESCRIPTION | b. LIST CODES FROM TABLE 2C-1 | | 001 | Dyeing and Finishing of
Natural and Synthetic
Fibers | 0.098600 MGD | 4 Million Gal.
Aerated
Lagoon; 101,830
GPD; ~39 Day
Retention Time | 3-B | | | | | 1 Million Gal.
Activated
Sludge Lagoon;
98,600 GPD; ~10
Day Retention
Time | 3-A | | | | | Coagulation:
252,194 GPD | 2-D | | | | | Flocculation:
252,194 GPD | 1-G | | | | | 84,420 Gal.
Sedimentation
Basin; 252,194
GPD; ~8 Hour
Retention Time | 1-U | | | | | Multimedia
Filtration
(optional) | 1-Q | | | | | -Waste- | | | | | | 84,420 Gal.
Aerated Sludge
Holding | XX | | | | J-Filter Press | 5-R | | |---|---|---------------------------|-----|--| | | | Drying Beds
(optional) | 5-H | | | | | Landfill | 5-Q | · | , | | | | | ENTIFICATION OF CONDITION, | | ES (complete the following table AFFECTED OUTFALLS | NO (go to Item IV-B) 3 BRIEF DESCRIPTION OF PROJECT | | INAL
NCE DATE | |---|------------|--|---|-----------------|------------------| | AGREEMENT, ETC. | a. No | b SOURCE OF DISCHARGE | | a REQ-
UIRED | 5 PRO-
JECTED | | | | 710-77-307-30 | | | , , , , , , | | | | | | | | | | | | - 100484 | | | | | | | | | | | | | | | | | | OPTIONAL You may attach which may affect your dischar and indicate your actual or pla | ges) you n | ow have underway or which you
dules for construction. | nal water pollution control programs (or other env
u plan. Indicate whether each program is now un
RIPTION OF ADDITIONAL CONTROL PROGRA | derway or plan | ned. | EPA EPA ID Number (Copy from Item 1 of Form 1) VAD121824023 #### **CONTINUED FROM PAGE 2** | may be discharged from any out | rtne poliutants listed in Table:
fall. For every pollutant you l | s 2c-3 of the instructions, whi
ist, briefly describe the reaso | I through V-9.
ch you know or have reasor
ns you believe it to be prese | to believe is discharged on the standard to the standard report any analytical to the standard report and report and the standard report repor | |--|---|--|---|--| | data in your possession. 1. POLLUTANT | 2. SOURCE | 1. POLLU | | 2. SOURCE | | None | L. JOJUNGE | I. I OLLO | | 2. 000/OL | | | | | | | | | <u></u> | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | , | | , * | 4 | POTENTIAL DISCHARGES | | | | | | s any pollutant listed in Item V-C | a substance or a componen | t of a substance which you cu | urrently use or manufacture | as an intermediate or final | | roduct or byproduct? | | | | | | roddot or byproddot: | YES (list all such pollu | stanta halassi | NO (see to /tem) | // D) | | | YES (list all such polit | itants below) | NO (go to Item) | /I-B) | ### CONTINUED FROM THE FRONT | Do you have any knowledge or r | | | | |--|--|--|---| | receiving water in relation to you | reason to believe that any biological test for acute
ir discharge within the last 3 years?
YES (identify the test(s) and describe their purpo | | | | Acute Test: 48-hour sta
for calculation of a valid
indicate that the effluent
on October 5, 2012. In a
September testing perio | YES (identify the test(s) and describe their purpo
tic acute Ceriodaphina Dubia test co.
I median lethal concentration (LC50) of
t was not acutely toxic to the test org
I letter dated September 9, 2012, Ron
I d and the cause of the violation was | nducted in such a manner
and acute toxicity (TUa). T
ganisms, with the exception
lile reported the permit viol
believed to be due to a pro | The results of this testing
n of test results reported
lation for the July-
ocess change (addition of | | the violation and test red
longer in use at the facil
December 14, 2012. | eed zinc removal for permit compliand sults for the October-December testility. Reports are dated November 8, 2 | ng period showed no acute
2011, February 27, 2012, Ju | e toxicity. Sefloc 2012 is no
uly 5, 2012, October 5, and | | renewal Ceriodaphina D
that the effluent showed
reproduction were obse | newal test using Ceriodaphina Dubia. Bubia test using 24-hour composite ef I no toxicity effects on the test organic Bubiant test concentrations good at effluent test and January 2, 201 | ffluent samples. The result
iism survival. However, tox
greater than the effluent tox | ts of this testing indicate
cicity effects on | | XES (lis
ar | ed in Item V performed by a contract laboratory or
of the name, address, and telephone number of, a
nalyzed by, each such laboratory or firm below) | | Section IX) | | A. NAME | B. ADDRESS | (area code & no.) | D. POLLUTANTS ANALYZED (list) | | Pace Analytical | 205 East Medow Road, Suite A,
Eden, NC, 27288 | (336) 623-8921 | All testing except for analyses performed by | | | | | CHA Companies, Inc.
and REIC Laboratories,
Inc. | | CHA Companies Inc. | 1116 South Main Street,
Blacksburg, VA 24060 | (540) 552-5548 | and REIC Laboratories, | | CHA Companies Inc. REIC Laboratories, Inc. | | (540) 552-5548
(540) 777-1276 | and REIC Laboratories, IncMedia Lethal Concentration (LC50) -Acute Toxicity (TUa=100/LC50) -No Observed Effect Concentration (NOEC) -Chronic Toxcity | | REIC Laboratories, Inc. IX. CERTIFICATION I certify under penalty of law the designed to assure that qualifie who manage the system or s | Blacksburg, VA 24060 3029-C Peters Creek Road, Roanoke, VA 24019 at this document and all attachments were prepared personnel properly gather and evaluate the inference persons directly responsible for gathering purate, and complete. I am aware that there are | (540) 777-1276 ared under my direction or supervisite formation submitted. Based on my to the information, the information s | and REIC Laboratories, Inc. -Media Lethal Concentration (LC50) -Acute Toxicity (TUa=100/LC50) -No Observed Effect Concentration (NOEC) -Chronic Toxcity (TUc=100/NOEC) Sulfite ion in accordance with a system inquiry of the person or persons submitted is, to the best of my | | REIC Laboratories, Inc. IX. CERTIFICATION I certify under penalty of law the designed to assure that qualifie who manage the system or the knowledge and belief, true, accepossibility of fine and imprisonm A. NAME & OFFICIAL TITLE (type) | Blacksburg, VA 24060 3029-C Peters Creek Road, Roanoke, VA 24019 at this document and all attachments were preparate personnel properly gather and evaluate the inference persons directly responsible for gathering purate, and complete. I am aware that there are ent for knowing violations. | ared under my direction or supervisition submitted. Based on my to the information, the information se significant penalties for submitting | and REIC Laboratories, Inc. -Media Lethal Concentration (LC50) -Acute Toxicity (TUa=100/LC50) -No Observed Effect Concentration (NOEC) -Chronic Toxcity (TUc=100/NOEC) Sulfite Sulfite Sulfite Sion in accordance with a system inquiry of the person or persons submitted is, to the best of my of false information, including the PHONE NO. (area code & no.) | | REIC Laboratories, Inc. IX. CERTIFICATION I certify under penalty of law the designed to assure that qualifie who manage the system or the knowledge and belief, true, accepossibility of fine and imprisonment. | Blacksburg, VA 24060 3029-C Peters Creek Road, Roanoke, VA 24019 at this document and all attachments were preparate personnel properly gather and evaluate the inference persons directly responsible for gathering purate, and complete. I am aware that there are ent for knowing violations. | ared under my direction or supervisition submitted. Based on my to the information, the information see significant penalties for submitting | and REIC Laboratories, Inc. -Media Lethal Concentration (LC50) -Acute Toxicity (TUa=100/LC50) -No Observed Effect Concentration (NOEC) -Chronic Toxcity (TUc=100/NOEC) Sulfite sion in accordance with a system inquiry of the person or persons submitted is, to the best of my of false information, including the | | PART A - You must provi | ide the result | s of at least. | | | | able. Comr | /lete one tabl | e for each ou' | ,tfall. See in | structions for | additional de | etails. | |---------------------------------------|--------------------------|---------------------|-----------------------------|---------------------|-----------------------------|--|----------------|-----------------------|----------------|--------------------------|---------------|-----------| | 1 | | | 2 | 2. EFFLUENT | ,T | | | 3. UN | NITS | 4. IN | TAKE (opti | ional) | | 1. POLLUTANT | a. MAXIMU
VAL | | b. MAXIMUM 30
(if availa | | c. LONG TERM /
(if avail | | d. NO. OF | | if blank) | a. LONG
AVERAGE | | b. NO. OF | | | (1)
CONCENTRATI
ON | (2) MASS | CONCENTRATI | (2) MASS | CONCENTRATI | (2) MASS | ANALYSIS | a. CONCEN-
TRATION | b. MASS | (1)
CONCENTRATI
ON | (2) MASS | ANALYSES | | a. Biochemical Oxygen
Demand (BOD) | 12.7 | 10.2 | 8.23 | 4.27 | 4.1 | 1.53 | 43 | mg/L | Kg | | | | | b. Chemical Oxygen
Demand (COD) | 220 | 176 | 220 | 114 | 95.7 | 35.7 | 12 | mg/L | Kg | | | | | c. Total Organic Carbon (TOC) | 70.4 | 56.5 | | | - | | 1 | mg/L | Kg | | | | | d. Total Suspended Solids (TSS) | 54 | 43.3 | 21.0 | 10.9 | 3.36 | 1.25 | 43 | mg/L | Kg | | | | | e. Ammonia (as N) | 1.3 | 1.0 | | | | | . 1 | mg/L | Kg | | | | | f. Flow | Value 0.2 | 212 | Value 0.1 3 | 37 | Value 0.09 | 986 | 239 | MGD | | Value | | | | g. Temperature (winter) | Value 20 | 20 | Value 16. | i.2 | Value 12 | 2 | 120 | °C | | Value | | | | h. Temperature (summer) | Value 2 | 28 | Value 25. | <i>j.</i> 9 | Value 22 | ······································ | 100 | 0/ | °C | Value | | | | i. pH | Minimum 7.56 | Maximum 8.61 | Minimum 7.18 | Maximum 7.48 | | | 478 | STANDAF | RD UNITS | | | | PART B - Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitation guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements. | 1. POLLUT- | 2. MA | RK 'X' | 0, E11 E0E(1) | | | | | | | VITS | 5. IN | TAKE (opt | ional) | | |--------------------------------|----------------------|--------------------------|--------------------------|-----------------|--------------------------|----------|--|----------|-----------|-----------------------|-----------|----------------------|-----------------|-----------| | ANT AND
CAS NO. (if | a, BE-
LIEVE
D | B. BE-
LIEVE
D AB- | | UM DAILY
LUE | b. MAXIMUM 3
(if avai | | c. LONG TERM AVRG. VALUE
(if available) | | d. NO. OF | (specify | if blank) | | TERM
E VALUE | b. NO. OF | | available) | PRES-
ENT | SENT | (1)
CONCENTRA
TION | (2) MASS | (1)
CONCENTRATIO
N | (2) MASS | (1)
CONCENTRATIO
N | (2) MASS | ANALYSIS | a. CONCEN-
TRATION | b. MASS | (1)
CONCENTRATION | (2) MASS | ANALYSES | | a. Bromide
(24959-67-9) | \boxtimes | | 1.84 | 1.48 | | | | | 1 | mg/L | Kg | | | | | b. Chlorine,
Total Residual | | \boxtimes | NA | | | | | | | | | | | | | c. Color | \boxtimes | | 835 | NA | 398 | NA | 162 | NA | 43 | ADMI | NA | | | | | d. Fecal
Coliform | | \boxtimes | NA | | | | | | | | | | | | | e. Fluoride
(16984-48-8) | \boxtimes | . 🗀 | <0.5 | <0.4 | | | | | 1 | mg/L | Kg | | | | | f. Nitrate-
Nitrite (as N) | \boxtimes | | 1.7 | 1.36 | | | | | 2 | mg/L | Kg | | | | #### ITEM V-B CONTINUED FROM FRONT | 1. POLLUT- | 2. MA | 1964-1867 (1968-1969) | | | | EFFLUENT | | | 1000 | 4. U | | | ITAKE (opti | onal) | |---|----------------------|--------------------------|--------------------------|-------------|--------------------------|-----------------|--------------------------|---------------------|-----------|-----------------------|-----------|------------------------------------|-------------------|-----------| | ANT AND | a. BE-
LIEVE
D | B. BE-
LIEVE
D AB- | a. MAXIMUM E | DAILY VALUE | b. MAXIMUM 3
(if avai | | (if ava | AVRG. VALUE ilable) | d. NO. OF | (specify | if blank) | a. LONG
AVERAG | G TERM
E VALUE | b. NO. OF | | CAS NO. (if available) | PRES-
ENT | SENT | (1)
CONCENTRATIO
N | (2) MASS | (1)
CONCENTRATI
ON | (2) MASS | (1)
CONCENTRATI
ON | (2) MASS | ANALYSIS | a. CONCEN-
TRATION | b. MASS | AVERAG
(1)
CONCENTRATI
ON | (2) MASS |
ANALYSES | | g. Nitrogen,
Total Organic
(as N) | \boxtimes | | 37.4 | 30.0 | | | | | 1 | mg/L | Kg | | | | | n. Oil and
Grease | | \boxtimes | <5 | <4.0 | <5 | <2.6 | <5 | <1.9 | 12 | mg/L | Kg | | | | | Phosphorus
(as P), Total
(7723-14-0) | | | 2.8 | 2.25 | | | | | 1 | mg/L | Kg | | | | | . Radioactivity | , | | | 900 mag | | | | | | | | | | | | (1) Alpha,
Total | | | 6.05 | 4.86E-6 | | | | , | 1 | pCi/L | Ci | | | | | (2) Bets,
Total | \boxtimes | | 9.56 | 7.67E-6 | | | | | 1 | pCi/L | Ci | | | | | (3) Radium,
Total | | \boxtimes | 0.109 | 8.75E-8 | | | | | 1 | pCi/L | Ci | | | | | (4) Radium
226, Total | | \boxtimes | NA | | | : | | | | | · | | | | | k. Sulfate (as
SO ₄)
(14808-79-8) | \boxtimes | | 187 | 150 | | | | | 1 | mg/L | Kg | | | | | l. Sulfide
(as S) | \boxtimes | | <1 | <0.80 | <1 | <0.52 | <1 | <0.37 | 43 | mg/L | Kg | | | | | m. Sulfite (as
SO ₃)(
14265-45-3) | | \boxtimes | <2.0 | <1.60 | | | | | 1 | mg/L | Kg | | | | | n. Surfactants | \boxtimes | | <0.4 | <0.32 | | | | | 1 | mg/L | Kg | | | | | o. Aluminum,
Total
(7429-90-5) | | \boxtimes | <0.1 | <0.080 | | | | | 1 | mg/L | Kg | | - | , | | p. Barium,
Total
(7440-39-3) | \boxtimes | | 0.0096 | 0.008 | | | | | 1 | mg/L | Kg | | | | | q. Boron,
Total
(7440-42-8) | \boxtimes | | 0.33 | 0.26 | | | | | 1 | mg/L | Kg | | | | | r. Cobalt,
Total
(7440-48-4) | | | 0.105 | 0.084 | | | | | 1 | mg/L | Kg | | | | | s. Iron, Total
(7439-89-4) | \boxtimes | | <0.05 | <0.04 | | | | | 1 | mg/L | Kg | | | | | t. Magnesium,
Total
(7439-95-4) | | | 5.18 | 4.15 | | | | | 1 | mg/L | Kg | | | | | u. Molybdenum,
Total
(7439-98-7) | | | 0.017 | 0.030 | | | | | 1 | mg/L | Kg | | | | | v. Manganese,
Total
(7439-96-5) | \boxtimes | | 0.142 | 0.114 | | | | | 1 | mg/L | Kg | | | | | w. Tin, Total
(7440-31-5) | | \boxtimes | <0.005 | <0.004 | | | | | 1 | mg/L | Kg | | | | | x. Titanium,
Total
(7440-32-6) | | \boxtimes | <0.005 | <0.004 | | | | | 1 | mg/L | Kg | | | | EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER VAD121824023 001 CONTINUED FROM PAGE 3 OF FORM 2-C PART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and non-required GC/MS fractions), mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis and requirements. | 1. POLLUT- | expected to | be discharged
2. MARK 'X' | . Note that t | nere are 7 pages t | o this part; please | | refully. Comple | te one table (ai | I 7 pages) for | each outfall. S | | for additional | | uirements.
TAKE (opt | lional) | |--|-------------------------------|------------------------------|----------------------------|------------------------|---------------------|-------------------------|--------------------------|------------------------|----------------|----------------------|--------------------------|----------------|-------------------|-------------------------|----------------------| | ANT AND
CAS NO. (if | a. TEST-
ING RE-
QUIRED | b. BE-
LIEVED
PRE-SENT | c. BE-
LIEVED
ABSENT | a. MAXIMUM C | AILY VALUE | b. MAXIMUM 3
(if ava | 30 DAY VALUE
iilable) | (if ava | .UE | d. NO. OF
ANALYSI | | if blank) | a. LONG
AVERAG | G TERM
SE VALUE | b. NO. OF
ANALYSE | | available) | | | | (1) CONCENT-
RATION | (2) MASS | (1) CONCENT-
RATION | (2) MASS | (1) CONCENT-
RATION | (2) MASS | s | a.
CONCEN-
TRATION | b. MASS | CONCENTRA
TION | (2) MASS | S | | METALS, CY | ANIDE, AN | D TOTAL PI | HENOLS | | | | | | | | | | | | | | 1m. Antimony,
Total
(7440-36-0) | | | | <0.005 | <0.004 | | | | | 1 | mg/L | Kg | | | | | 2M. Arsenic,
Total
(7440-38-2) | | | | <0.01 | <0.008 | | | | | 1 | mg/L | Kg | | | | | 3M. Beryllium,
Total
(7440-41-7) | | | | <0.001 | <0.0008 | | | | | 1 | mg/L | Kg | | | | | 4M. Cadmium,
Total
(7440-43-9) | | | | <0.001 | <0.0008 | | | | | 1 | mg/L | Kg | | | | | 5M Chromium,
Total
(7440-47-3) | | | | 0.028 | 0.022 | 0.028 | 0.0145 | 0.015 | 0.006 | 12 | mg/L | Kg | | | | | 6M Copper,
Total
(7440-50-8) | | | | 0.0056 | 0.0045 | 0.0056 | 0.003 | 0.0005 | 0.0002 | 12 | mg/L | Kg | | | | | 7M lead, Total
(7439-92-1) | \boxtimes | | | <0.005 | <0.004 | | | | | 1 | mg/L | Kg | | | | | 8M Mercury,
Total
(7439-97-6) | | | | <0.2 | <0.0001
6 | | | | | 1 | μg/L | Kg | | | | | 9M Nickel,
Total
(7440-02-0) | | | | <0.005 | <0.004 | | | | | 1 | mg/L | Kg | | | | | 10M Selenium,
Total
(7782-49-2) | \boxtimes | | | <0.01 | <0.008 | | | | | 1 | mg/L | Kg | | | | | 11M Silver,
Total
(7440-22-4) | | | | <0.005 | <0.004 | | | | | 1 | mg/L | Kg | | | | | 12M Thallium,
Total
(7440-28-0) | | | | <0.01 | <0.008 | | | | | 1 | mg/L | Kg | | | | | 13M Zinc,
Total
(7440-66-6) | \boxtimes | | | 0.23 | 0.184 | 0.23 | 0.119 | 0.174 | 0.065 | 4 | mg/L | Kg | | | | | 14M Cyanide,
Total
(57-12-5) | | | | <0.005 | <0.004 | | | | | 1 | mg/L | Kg | | | | | 15M Phenois,
Total
DIOXIN | | | | 0.14 | 0.11 | 0.113 | 0.059 | 0.031 | 0.012 | 36 | mg/L | Kg | | | | | 2,3,7,8-Tetra-
chlorodibenzo-
P-Dioxin
(176401-6) | | | | DESCRIBE R | ESULTS | | | | | | | | | | | #### CONTINUED FROM THE FRONT | | 2. MARK 'X' | | | | 3. I | EFFLUEN1 | | | | 4. UI | VITS | 5. IN | TAKE (op | tional) | |-------------------------------|------------------------------|---
---	---	--	--
---	--	--	--
(534-52-1) 5A 24-Dinitro- \boxtimes <50.0 < 0.40 1 μg/L Kg phenol (51-28-5)6A. 2-Nitro-phenol X П < 5.0 < 0.004 µg/L (88-75-5) 1 Kg 7A 4-Ntro-phenol X П <50.0 (100-02-7) < 0.40 1 μg/L Kg 8A P-Chloro-M- \boxtimes NA (59-50-7)9A. Penta-Ø П chlorophenol <25.0 < 0.020 1 Kg μg/L (87-86-5) 10A. Phenol \boxtimes (108-95-2) 0.14 0.11 0.113 0.059 0.031 0.012 36 mg/L Kg 11A. 2,4,6-Tri- \boxtimes П \Box <10.0 chlorophenol < 0.008 1 μg/L Kg (88-06-2) #### CONTINUED FROM THE FRONT	1. POLLUT-		2. MARK 'X'
			1
--|--|--|---|--| | | rative Description of Pol | utant Sources | | | | | | or each outfall, provide an estimate o | | mpervious su | rfaces (including payed areas | and building roofs) drained | | to | the outfall, and an estimate of the to | tal surface area drained by t | he outfall. | , acce (o.acmg pared areas (| and banding roots, aramod | | Outfall | Area of Impervious Surface | Total Area Drained | Outfall | Area of Impervious Surface | Total Area Drained | | Number | (provide units) | (provide units) | Number | (provide units) | (provide units) | | 001 | 33,059 Sq. Ft. | 33,059 Sq. Ft. | | | | | 003 | 25,737 Sq. Ft. | 25,737 Sq. Ft. | 1 | | | | | | | | | | | in
pra | ovide a narrative description of signi
a manner to allow exposure to sto
actices employed to minimize contac
anner, and frequency in which pestic | orm water; method of treatr
t by these materials with sto | ment, storage
orm water run | or disposal; past and prese
off; materials loading and accer | nt materials management | | Tanks s | stored within Outfall 001 dra | ninage area: | | | | | | 2,000 gallon Therminol 55 d | | | | | | | 500 gallon Therminol 55 oil | | | | • | | 1-7 | gamen incident | | | | | | Tanks a | also stored within Outfall 00 | 1 drainage area, that | were nrev | iously stored within Ou | tfall 002 drainage | | | ior to 2008: | r aramage area, mae | were prev | iously stored within Ot | tian ooz aramage | | | 800,000 gallon No. 2 fuel oi | l tank | | | • | | | 10,000 gallon Therminol 55 | | | | | | , , , | . • | | | | | | | 10,000 gallon waste oil tank
10,000 gallon No. 2
fuel oil i | | | | | | , , | | (a//K | | | | | (1) | 6,000 gallon empty tank | | | | | | 0.45-11 | 000. | | | | • | | Outfall (| | | | | | | | | 71 | | | | | | | | | aterials stored in this st | | | area. Ti | his roadway is used for tran | sporting materials a | round the | | | | area. Ti
unload i | his roadway is used for tran
materials and chemicals int | nsporting materials a
to the plant storage a | round the
reas. | plant. Also, this area is | used to load and | | area. To unload of C. Fo sto | his roadway is used for tran
materials and chemicals int
reach outfall, provide the location a
orm water runoff; and a description | asporting materials at to the plant storage a and a description of existing of the treatment the storm | round the reas. structural and water received | plant. Also, this area is d nonstructural control measures, including the schedule and | es to reduce pollutants in | | C. Fo | his roadway is used for tran
materials and chemicals int
r each outfall, provide the location a | asporting materials as
to the plant storage a
and a description of existing
of the treatment the storm
a ultimate disposal of any so | round the reas. structural and water received | plant. Also, this area is d nonstructural control measures, including the schedule and | es to reduce pollutants in type of maintenance for | | C. Fo sto cor Outfall Number | his roadway is used for tran
materials and chemicals into
r each outfall, provide the location a
orm water runoff; and a description
introl and treatment measures and the | asporting materials as
to the plant storage a
and a description of existing
of the treatment the storm
a ultimate disposal of any so
Treatment | round the reas. structural and water received lid or fluid water | plant. Also, this area is d nonstructural control measures, including the schedule and | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 | | C. Fo sto corroll Number 001 | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the materials and a description and treatment measures and the stormwater discharged to | asporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lago | round the reas. structural and water received lid or fluid water | plant. Also, this area is d nonstructural control measures, including the schedule and | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment | | C. Fo sto cor Outfall Number | his roadway is used for tran
materials and chemicals into
r each outfall, provide the location a
orm water runoff; and a description
introl and treatment measures and the | asporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lago | round the reas. structural and water received lid or fluid water | plant. Also, this area is d nonstructural control measures, including the schedule and | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 | | C. Fo sto corroll Number 001 | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the materials and a description and treatment measures and the stormwater discharged to | asporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lago | round the reas. structural and water received lid or fluid water | plant. Also, this area is d nonstructural control measures, including the schedule and | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment | | C. Fo sto collowing Number 001 003 | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the materials and a description and treatment measures and the stormwater discharged to | asporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lago | round the reas. structural and water received lid or fluid water | plant. Also, this area is d nonstructural control measures, including the schedule and | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment | | C. Fo sto collow and the store of | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the reach outfall, provide the location and treatment measures and the stormwater discharged to stormwater discharged to stormwater Discharges tertify under penalty of law that the instormwater discharges, and that all | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lagor Pigg River Treatment by the outfall(s) covered by the | round the reas. structural and water receive lid or fluid water receive lid or fluid water receive lid or structural stru | plant. Also, this area is d nonstructural control measur as, including the schedule and stes other than by discharge. have been tested or evalua | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment 1 | | Area. To unload and a constant | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the reach outfall, provide the reach outfall and treatment measures and the stormwater discharged to stormwater discharged to stormwater Discharges pertify under penalty of law that the restormwater discharges, and that all form 2E application for the outfall. | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so a streatment. Treatment 5,000,000 gallon lagor pigg River The outfall(s) covered by the nonstormwater discharges to the storage of the storages of the storage stor | round the reas. structural and water receive lid or fluid water receive lid or fluid water receive lid or structural stru | plant. Also, this area is d nonstructural control measur as, including the schedule and stes other than by discharge. have been tested or evalua tfall(s) are identified in either ar | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C | | C. Fo sto col Outfall Number 001 003 V. Non A. I conor in Name of O | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the reach outfall, and treatment measures and the stormwater discharged to stormwater discharged to stormwater Discharges the retify under penalty of law that the restormwater discharges, and that all form 2E application for the outfall. Official Title (type or print) | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lagor Pigg River Treatment by the outfall(s) covered by the | round the reas. structural and water receive lid or fluid water receive lid or fluid water receive lid or structural stru | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatefall(s) are identified in either and part of the | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed | | C. Fo sto col Outfall Number 001 003 V. Non A. I conor in Name of O | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the reach outfall, provide the reach outfall and treatment measures and the stormwater discharged to stormwater discharged to stormwater Discharges pertify under penalty of law that the restormwater discharges, and that all form 2E application for the outfall. | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so a streatment. Treatment 5,000,000 gallon lagor pigg River The outfall(s) covered by the nonstormwater discharges to the storage of the storages of the storage stor | round the reas. structural and water receive lid or fluid water receive lid or fluid water receive lid or structural stru | plant. Also, this area is d nonstructural control measur as, including the schedule and stes other than by discharge. have been tested or evalua tfall(s) are identified in either ar | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed | | Outfall Number 001 003 V. Non A. I con nor nor R. Lane | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the reach outfall and treatment measures and the stormwater discharged to Stormwater discharged to Stormwater Discharges the retify under penalty of law that the stormwater discharges, and that all form 2E application for the outfall. If the control of the country cou | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so a storage of the treatment of the treatment of the treatment of the treatment of the property of the country t | round the reas. structural and water received lid or fluid | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatfall(s) are identified in either are | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed | | C. Fo sto collow the store of t | this roadway is used for transmaterials and
chemicals into reach outfall, provide the location at the reach outfall and treatment measures and the stormwater discharged to stormwater discharged to stormwater Discharges the retify under penalty of law that the restormwater discharges, and that all form 2E application for the outfall. If the control of the method use retified a description of the method use | isporting materials as to the plant storage a and a description of existing of the treatment the storm equitimate disposal of any so a storage of the treatment of the treatment of the treatment of the plant of the treatment of the plant of the plant of the country coun | structural and water received lid or fluid | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatifall(s) are identified in either and drainage points that were direct | es to reduce pollutants in type of maintenance for List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. | | Outfall Number V. Non A. I conor or R. Lane B. pro Outfall | this roadway is used for transmaterials and chemicals into reach outfall, provide the location at the reach outfall and treatment measures and the stormwater discharged to stormwater discharged to stormwater Discharges the retify under penalty of law that the stormwater discharges, and that all form 2E application for the outfall. In the control of the method use the reach outfall of the method use the reach of the method use the reach outfall out | isporting materials as to the plant storage a and a description of existing of the treatment the storm equitimate disposal of any so a storage of the treatment of the treatment of the treatment of the property of the plant | round the reas. structural and water receive lid or fluid wa | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatifall(s) are identified in either and drainage points that were direct area. The drainage area | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. is comprised | | Area. To unload a control of the con | his roadway is used for transmaterials and chemicals into reach outfall, provide the location as my water runoff; and a description introl and treatment measures and the Stormwater discharged to Stormwater discharged to Stormwater Discharges sertify under penalty of law that the stormwater discharges, and that all Form 2E application for the outfall. Official Title (type or print) Leonard, General Manager wide a description of the method use to stormwater discharge. As of stormwater discharge. | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lagor pigg River Signature d, the date of any testing, ar seperated from our materials and the plant in specific seperated from our materials and the plant is separated mat | round the reas. structural and water receive lid or fluid water round these out lid the onsite of the receive of the receive lide in plant a receive of the receive like the receive like like like like like like like lik | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatefall(s) are identified in either an area. The drainage area the plant flood drainage | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. Is comprised system and a | | C. Fo sto correction of the co | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at materials and chemicals into reach outfall, provide the location at materials and a description introl and treatment measures and the stormwater discharged to Stormwater discharged to Stormwater Discharges sertify under penalty of law that the stormwater discharges, and that all Form 2E application for the outfall. Stificial Title (type or print) Leonard, General Manager wide a description of the method use to 303 drainage area is totally stormwater discharge. For our schematics, there is refer to the stormwater of the stormwater is s | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lagor pigg River Signature d, the date of any testing, ar seperated from our materials and the plant in specific seperated from our materials and the plant is separated mat | round the reas. structural and water receive lid or fluid water round these out lid the onsite of the receive of the receive lide in plant a receive of the receive like the receive like like like like like like like lik | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatefall(s) are identified in either an area. The drainage area the plant flood drainage | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. Is comprised system and a | | C. Fo sto correction of the co | his roadway is used for transmaterials and chemicals into reach outfall, provide the location as my water runoff; and a description introl and treatment measures and the Stormwater discharged to Stormwater discharged to Stormwater Discharges sertify under penalty of law that the stormwater discharges, and that all Form 2E application for the outfall. Official Title (type or print) Leonard, General Manager wide a description of the method use to stormwater discharge. As of stormwater discharge. | isporting materials as to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lagor pigg River Signature d, the date of any testing, ar seperated from our materials and the plant in specific seperated from our materials and the plant is separated mat | round the reas. structural and water receive lid or fluid water round these out lid the onsite of the receive of the receive lide in plant a receive of the receive like the receive like like like like like like like lik | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatefall(s) are identified in either an area. The drainage area the plant flood drainage | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. Is comprised system and a | | Outfall Number OUT Non A. I conor of R. Lane B. pro Outfall Centirely review of discharge | his roadway is used for transmaterials and chemicals into reach outfall, provide the location at the reach outfall and treatment measures and the stormwater discharged to stormwater discharged to stormwater discharges, and that all form 2E application for the outfall. In the control of the method use of stormwater discharge is totally so of stormwater discharge. And of our schematics, there is reged to the Pigg River. | isporting materials at to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lagor pigg River Signature d, the date of any testing, ar seperated from our materials and the plant in specific seperated in specific seperated from our materials. | round the reas. structural and water receive lid or fluid water round these out lid the onsite of the receive of the receive lide in plant a receive of the receive like the receive like like like like like like like lik | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluatefall(s) are identified in either an area. The drainage area the plant flood drainage | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. Is comprised system and a | | Outfall Number OUT Non A. I conor or I R. Lane B. pro Outfall Centirely review of discharge | his roadway is used for transmaterials and chemicals into reach outfall, provide the location a form water runoff; and a description introl and treatment measures and the stormwater discharged to Stormwater discharged to Stormwater discharged to Stormwater Discharges sertify under penalty of law that the stormwater discharges, and that all form 2E application for the outfall. If the storm of the fourfall is the stormwater discharge is totally so of stormwater discharge. A for our schematics, there is reged to the Pigg River. | asporting materials at to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lagoration pigg River The outfall(s) covered by the nonstormwater discharges to signature d, the date of any testing, are seperated from our materials of the country testing and the country testing are seperated from our materials and other non-stormwater discharges the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are seperated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the
country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from our materials and the country testing are separated from the country te | structural and water received lid or fluid water | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluateful(s) are identified in either and drainage points that were direct area. The drainage area the plant flood drainage arge source found. Store | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. is comprised system and a mwater is | | Area. Tunload C. Fo sto color of the store o | his roadway is used for transmaterials and chemicals into reach outfall, provide the location as the reach outfall and treatment measures and the stormwater discharged to Stormwater discharged to Stormwater discharges, and that all form 2E application for the outfall. In the stormwater discharges, and that all form 2E application for the outfall. In the stormwater discharge area is totally so of stormwater discharge. As the four schematics, there is reged to the Pigg River. In the stormwater discharge area is totally so of stormwater discharge. As the four schematics, there is reged to the Pigg River. | isporting materials at to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lago Pigg River The outfall(s) covered by the nonstormwater discharges to the date of any testing, are seperated from our materials at the rough inspection of the non-stormwater discharges for other non-stormwater discharges for the date of any testing, are seperated from our materials and other non-stormwater discharges for the story of significant leaks or discharges for the plant of plan | structural and water received lid or fluid water discharged lid or fluid water | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluateful(s) are identified in either and strainage points that were direct area. The drainage area the plant flood drainage arge source found. Stores or hazardous pollutants at the | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. is comprised system and a mwater is | | Area. Tunload C. Fo sto color of the store o | his roadway is used for transmaterials and chemicals into reach outfall, provide the location a form water runoff; and a description introl and treatment measures and the stormwater discharged to Stormwater discharged to Stormwater discharged to Stormwater Discharges sertify under penalty of law that the stormwater discharges, and that all form 2E application for the outfall. If the storm of the fourfall is the stormwater discharge is totally so of stormwater discharge. A for our schematics, there is reged to the Pigg River. | isporting materials at to the plant storage a and a description of existing of the treatment the storm e ultimate disposal of any so Treatment 5,000,000 gallon lago Pigg River The outfall(s) covered by the nonstormwater discharges to the date of any testing, are seperated from our materials at the rough inspection of the non-stormwater discharges for other non-stormwater discharges for the date of any testing, are seperated from our materials and other non-stormwater discharges for the story of significant leaks or discharges for the plant of plan | structural and water received lid or fluid water discharged lid or fluid water | d nonstructural control measures, including the schedule and stes other than by discharge. have been tested or evaluateful(s) are identified in either and strainage points that were direct area. The drainage area the plant flood drainage arge source found. Stores or hazardous pollutants at the | List Codes from Table 2F-1 See Attachment 1 ted for the presence of accompanying Form 2C te Signed y observed during a test. is comprised system and a mwater is | #### EPA ID Number (copy from Item I of Form 1) VAD121824023 Continued from Page 2 | VII. Discharge Information | | | - 10 mm m | |--|--|----------------------------------|--| | A,B,C, & D: See instruction before proceeding | ng. Complete one set of tables for each
e included on separate sheets numbere | | nber in the space provided. | | E. Potential discharges not covered by ana | lysis - is any toxic pollutant listed in ta | able 2F-2, 2F-3, or 2F-4, a subs | tance or a component of a | | substance which you currently use or ma | nufacture as an intermediate or final pro | oduct or byproduct? | * | | Yes (list all such pollutants below) | | | No (go to Section IX) | | N/A | • | | . ' | | | | | | | | * | | | | | | | | | | | | VIII. Biological Toxicity Testing | | | | | Do you have any knowledge or reason to belie | ve that any biological test for acute or c | hronic toxicity has been made o | n any of your discharges or | | on a receiving water in relation to your dischar | ge within the last 3 years? | | 1,, , , , , , , , , , , , , , , , , , , | | Yes (list all such pollutants below) | | | No (go to Section IX) | | N/A | • | | | | | | | | | | IX. Contact analysis Information | | | | | Were any of the analysis reported in item VII pe | erformed by a contact laboratory or con- | sulting firm? | | | Yes (list the name, address, and tele | | | No (go to Section X) | | analyzed by, each such laborate | | | 110 (90 to 00000111) | | A. Name | B. Address | C. Area Code & Phone No. | D. Pollutants Analyzed | | Pace Analytical | 205 East Meadow Road, | 336-623-8921 | All testing | | | Suite A, Eden, NC 27288 | • | į ; | . • | | | V Cortification | | | | | X. Certification | at this desument and all attac | obmenta were areas | don oo dinonking on | | I certify under penalty of law the
supervision in accordance with a s | | | | | the information submitted. Based o | | | | | directly responsible for gathering t | | | | | belief, true, accurate, and complete | | | | | including the possibility of fine and | | | | | | imprisonment for knowing violation | tions. | İ | | A. Name & Official Title (type or print) | imprisonment for knowing viola | B. Area Code and | Phone No. | | A. Name & Official Title (type or print) R. Lane Leonard, General Manager | imprisonment for knowing viola | | Phone No. | | | imprisonment for knowing violat | B. Area Code and | | # **VII. Discharge Information** (Continued from page 3 of Form 2F) (OUTFALL 003) Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. | Pollutant | | m Values
de units) | | e Values
e units) | Number
Of | | |-------------------------------------|--|----------------------------|--|----------------------------|----------------------------|-----------------------| | And
CAS Number
(if available) | Grab Sample
Taken During
First 30
Minutes |
Flow-weighted
Composite | Grab Sample
Taken During
First 30
Minutes | Flow-weighted
Composite | Storm
Events
Sampled | Sources of Pollutants | | Oil & Grease | ND | ND | | | 1 | | | Biological Oxygen
Demand (BOD5) | ND | 2.2 mg/L | | | 1 | | | Chemical Oxygen
Demand (COD) | ND | ND | | | 1 | | | Total Suspended
Solids (TSS) | ND | 2.9 mg/L | | | 1 | | | Total Organic
Nitrogen | ND | ND | | | 1 | | | Total
Phosphorus | 0.13 mg/L | 0.14 mg/L | | | 1 | | | pН | | | Minimum | Maximum | | | Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements. | See trie | | ullional details and | requirements. | | | | |-------------------|--------------------------|----------------------|-----------------------------|---------------|-----------------|------------------------| | 5 | | m Values | Average | e Values | Number | | | Pollutant | | de units) | (inclua | e units) | Of | | | And
CAS Number | Grab Sample | Flow-weighted | Grab Sample
Taken During | Flow-weighted | Storm
Events | | | (if available) | Taken During
First 30 | Composite | First 30 | Composite | Sampled | | | (II avallable) | Minutes | Composite | Minutes | Composite | Sampled | Sources of Pollutants | | BOD5 | ND | 2.2 ma// | Williutes | | 4 | Sources of Foliatarits | | | | 2.2 mg/L | | | 1 | | | COD | ND | ND | | | 1 | | | TSS | ND | 2.9 mg/L | | | 1 | | | Sulfide | | | | | | | | Phenols | 0.077 mg/L | 0.022 mg/L | | | 1 | | | Total Chromium | ND | ND | | | 1 | | | pН | Part C - List each pollutant shown in Tables 2F-2, 2F-3, and 2F-4 that you know or have reason to believe is present. See the instructions for additional details and requirements. Complete one table for each outfall. (OUTFALL 003) | | Maximu | m Values | Average | e Values | Number | | |-------------------|--------------|---------------|--------------|---------------|---------|-----------------------| | Pollutant | (includ | de units) | (includ | e units) | Of | | | And | Grab Sample | | Grab Sample | | Storm | | | CAS Number | Taken During | Flow-weighted | Taken During | Flow-weighted | Events | | | (if available) | First 30 | Composite | First 30 | Composite | Sampled | | | | Minutes | | Minutes | | | Sources of Pollutants | | Total Nitrogen | 0.22 mg/L | 0.25 mg/L | | | 1 | | | Nitrate as N | 0.11 mg/L | 0.09 mg/L | | | 1 | | | Oil and Grease | ND | ND | | | 1 | | | Total Kjeldahl | ND | ND | | | 1 | | | Nitrogen | | | | | | | | Total Phenols | 0.077 mg/L | 0.022 mg/L | | | 1 | | | Total Phosphorous | 0.13 mg/L | 0.14 mg/L | | | 1 | | | Aluminum | ND | ND | | | 1 | | | Barium | 25.2 ug/L | 21.0 ug/L | | | 1 | | | Iron | ND | ND | | | 1 | | | Magnesium | 920 ug/L | 815 ug/L | | | 1 | | | Manganese | ND | ND | | | 1 | | | Zinc | 13.5 ug/L | ND | | | 1 | _ | | | | | t | | Part D | Provide data for the storm e | vent(s) which resulted in the maximul | m values for the flow weighted co | mposite sample. | |---------------------------|--|---|--|---| | 1. | 2. | 3. | 4. | 5. | | Date of
Storm
Event | Duration
of Storm Event
(in minutes) | Total rainfall
during storm event
(in inches) | Number of hours between
beginning of storm meas-
ured and end of previous
measurable rain event | Total flow from
rain event
(gallons or specify units) | | 5/6/13
To
5/9/13 | 5040 | 2.5 | >120 | 11.5 gal/min
(58,000 gallons) | ^{7.} Provide a description of the method of flow measurement or estimate. The estimated flow from Outfall 003 was determined using FlowMaster software estimating a trapezoidal channel with inputs of the following: Side Slopes 1:1, bottom width 2.0 ft, roughness coefficient 0.013, channel slope 0.50 %, normal depth 0.25 inches (observed). Estimated flow was 11.5 gal/min. #### ATTACHMENT 1 #### Storm Water #### FORM 2F: Outfall 001: Page 2 of 3, Item IV-C Storm water entering Outfall 001 is discharged into the wastewater treatment facility. The storm water enters a 5,000,000-gallon lagoon that has an approximately 35 day retention time before the wastewater is treated. #### Treatment Description (Codes from Table 2F-1) | 4,000,000 gal. Aerated Lagoon | 3-B | |--|-----| | 1,000,000 gal. Activated Sludge Lagoon | 3-A | | Coagulation | 2-D | | Flocculation | 1-G | | 84,420 gal. Sedimentation Basin | 1-U | | Multimedia Filtration (Optional) | 1-Q | | 84,420 gal. Aerated Sludge Basin | XX | | J-Filter Press | 5-R | | Drying Beds (Optional) | 5-H | | Landfill | 5-Q | In addition, stormwater discharge from former Outfall 002 will be discharged to the 5,000,000-gallon lagoon of Outfall 001. Storm water is collected and held during storm events in earthen and cement block dikes and then discharged to the lagoon at Outfall 001. Outfall 003: Page 2 of 3, Item IV-C Ronile has designed a visual inspection program that is conducted on a daily basis. The sensitive areas of operation are checked for malfunctions, structural deterioration, operator errors, and discharges that could lead to the release of substances handled in this area. An emergency gate, located adjacent to the outfall, can be used at the head of the outfall to contain any accidental spill within the paved area. Sand is located nearby to reinforce and seal the gate. Additionally, booms are located in the Dyehouse (approximately 100 feet away) that could be deployed at the gate area to further contain any liquids. Flow from Outfall 003 is discharged into the Pigg River. The estimated flow from Outfall 003 was determined using FlowMaster software estimating a trapezoidal channel with inputs of the following: Side Slopes 1:1, bottom width 2.0 ft, roughness coefficient 0.013, channel slope 0.50 %, normal depth 0.25 inches (observed). Estimated flow was 11.5 gal/min. Attachment 1 Ronile, Inc. ## VPDES PERMIT APPLICATION ADDENDUM – SUPPLEMENTARY INFORMATION | A. | | eneral Information | |----|----|--| | | 1. | Entity to whom the permit is to be issued: _Ronile, Inc Who will be legally responsible for the wastewater treatment facilities and compliance with the permit? This may or may not be the facility or property owner. | | | 2. | Classify the discharge as one of the following by checking the appropriate line: | | | | X _ a. Existing discharge b. Proposed discharge c. Proposed expansion of an existing discharge | | B. | | cation Is this facility located within city or town boundaries?Yes (Rocky Mount, VA) | | | 2. | What is the tax map parcel number for the land where this facility is located?72-342_ | | | 3. | For the facility to be covered by this permit, how many acres will be disturbed during the next five years due to new construction activities?N/A | | | 4. | What is the total acreage of the property on which the treatment plant is located? _44.49 Acres_ | | | 5. | Give the minimum elevation of the treatment plant site993.5 feet | | | 6. | Flood elevations of the treatment plant site: | | | | 25 year floodundetermined feet 100 year floodundetermined feet | | | | NOTE: 25-year and 100-year flood elevations for the treatment were not shown on the Flood Insurance Rate Maps provided by the Federal Emergency Management Agency (FEMA). No hydraulic and hydrologic analyses have been performed to determine the requested elevations. | | | 7. | Attached to the back of this application is a location map, which shows the following: | | | | a. Treatment Plant b. Discharge Point c. Receiving waters d. Boundaries of the property on which the treatment plant is located, or to be located. e. Distance from the treatment plant to the nearest: (Indicate "not applicable" for any distance greater than 2000 feet) i. Residence (478 feet) | | Addendum - | Supplementary | Information | |-------------|---------------|-------------| | Page 2 of 3 | | | - ii. Distribution line for potable water supply (448 ft) - iii. Reservoir, well, or other source of water supply (Located on-site) - iv. Recreational area (N/A) - f. Distance from the discharge point to the nearest: (Indicate "not applicable" for any distance greater than 15 miles) - i. Downstream community (N/A) - ii. Upstream and downstream water intake points (N/A) - iii. Shellfishing waters (N/A) - iv. Wetlands area (N/A) - v. Downstream impoundment (N/A) - vi. Downstream recreational area (N/A) #### C. Discharge Description 1. Provide a brief description of the wastewater treatment scheme. Also, to the back of this application, attach a process flow diagram showing each process
unit of the treatment plant, including all bypass piping and all backup power sources or redundancy in the system. The manufacturing facility is a dyer and finisher of natural and synthetic fibers. The yarn is creeled and run through a heat setter for bulking. Then the yarn goes through a dye process where a mixture of dye and dye setting chemicals are added. Excess water, chemicals, and dye are collected and piped out to the wastewater treatment facility. The yarn is steamed to set the dye and is then washed to remove excess dye. The yarn is run through Pad Rollers and a dryer to remove excess water prior to packaging for shipment to the customer. Excess water or condensate is collected and piped to the treatment facility. In the Rug Dye area, dyes and chemicals are mixed with water and pumped into Rug Dye Machines. After drying and rinsing, the water is extracted and piped to a lint removal system, then to the wastewater treatment facility. | 2. | What is the design average flow of this facility?0.123000 MGD Industrial facilities: What is the max. 300-day avg. production levels (include units)? _9,377,842 lbs | |----|---| | 3. | In addition to the above design flow or production level, should the permit be written with limits for any other discharge flow tiers or production levels? NO | | | If "Yes," please specify the other flow ties (in MGD) or production levels: Please consider: Is you facility's design flow considerably greater than your current flow? Do you plan to expand operations during the next five years? | | 4. | Nature of operations generating wastewater: _Fabric dyeing | | | 10-15_ % of flow from domestic connections/sources | | | Number of private residences to be served by the wastewater treatment facilities: _X01-4950 or more | Addendum – Supplementary Information Page 3 of 3 | | 5. Mode of discharge:X_ Cont Describe frequency and duration | | | |----|--|--|-------| | | Identify the characteristics of the recedischarge point: | eiving stream at the point just above the facility's | | | | X Permanent stream, never Intermittent stream, usuall Ephemeral stream, wet-we Effluent-dependent stream Lake or pond at or below t Other: | y flowing, sometimes dry
ather flow, often dry
, usually or always dry
he discharge point | | | D. | If this application is for a proposed or | nt Capacity — Proposed/Expanding Discharges expanded discharge(s), complete the phasing schech construction completion is anticipated and for 30 years thereafter. | edule | | | Proposed Design Capacity: | MGD | | | | | | | | | Anticipated Date of Construction Con | npletion: Month/Year | | | | | | | | | Anticipated Date of Construction Con Years after Completion 5 10 15 20 25 30 | Projected Flow (MGD) | | | | Years after Completion 0 5 10 15 20 25 30 Interim Facilities | | 5 |